Model-Independent Analysis of ring lattice

Chun-xi Wang

March 1, 2002

Some references:

- •C.X. Wang, M. Borland, V. Sajaev, K.J. Kim, "BPM system evaluation using model-independent analysis", PAC01
- •C.X. Wang, J. Iriwn, Y. Yan, "Computation of nonlinear one-turn maps from measurement with model-independent analysis", PAC99
- •J. Irwin, C.X. Wang, Y. Yan, et. Al., PRL 82(8), 1999.
- •Chun-xi Wang, "Model-Independent Analysis of beam centroid dynamics in accelerators", Ph.D. dissertation, Stanford University.

What is Model-Independent Analysis (MIA)

□ It's statistical analysis (principal component analysis) of spatial-temporal modes in beam centroid motion recorded by the BPMs.
□ It's mostly independent of detailed machine models.
□ It's inclusive rather than exclusive. Various other data analysis methods such as Fourier analysis, map analysis, etc. (even machine modeling) are being incorporated.
□ It's not a recipe for a specific measurement, instead, it's a new paradigm that facilitates systematic measurement/analysis of beam dynamics. Recipes have been developed for specific measurements, but there are a lot more to do and R&D are required.

Advantages:

High sensitivity, model independent, quick and non-invasive, systematic

Basic requirements on instrumentations:

A large set of reliable turn-by-turn BPMs

Physical base decomposition of BPM-data matrices

Temporal Patterns Spatial Patterns

Noise

A physical mode due to a dithering corrector

Experiment done at SLC

Examples of horizontal coherent modes in APS ring

Broadband low frequency noise and "chopper noise" at 20 and 40 kHz.

Dispersion and unsettled longitudinal oscillation.

Examples of problems in BPM history of APS

Measurement of horizontal BPM resolutions of APS

- Three coherent modes have been removed from the data.
- > BPMs on the upper part have larger noise mostly due to using higher gains.
- The curves don't reach the end because many BPMs do not function at all.

Noise reduction of turn-by-turn BPM history data of APS

- These are the BPM history data of a horizontally and vertically kicked beam.
- > After noise reduction, beam motion can be clearly seen beyond the gridlines of BPM digitization.
- \triangleright One BPM count is about 7 μ m.

Measurement of nonlinear transformation maps

Taylor map representation (TRANSPORT notations)

$$X_{k}^{b} = C_{k}^{a} + R_{kl}^{a \to b} X_{l}^{a} + T_{klm}^{a \to b} X_{l}^{a} X_{m}^{a} + U_{klmpq}^{a \to b} X_{l}^{a} X_{m}^{a} X_{p}^{a} + V_{klmpq}^{a \to b} X_{l}^{a} X_{m}^{a} X_{p}^{a} + \bigotimes$$

Need high sensitivity to beam motion, for which MIA could be crucial

Local R12 measurement of PEP-II LER

10σ normalized one-turn map (x-component) coefficients

Transverse wakefield effect measurements at SLC

